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absorbers, and has the advantage of posing no circuit reliability

problems.

The results presented were limited to the TMIIO mode. The

analysis may be easily applied to higher order cavity modes if the

circuit couples to those modes.
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Finite Element Formulation for Guided-Wave Problems

Using Transverse Electric Field Component
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MASANORI KOSHIBA, SENSOR MEMBER, IEEE

Abstract —A finite-element formulation for electromagnetic waveguide

problems is described using the transverse electric field component. In this

approach, the divergence relation V D = O is satisfied and SpUriOUS SOIU-

tions can be eliminated in the entire region of a propagation diagram. The

validity of the formulation is exmniued via applications to a few canonical

guided-wave problems.

I. INTRODUCTION

The most serious difficulty in applying the finite element

method to waveguide problems has been the appearance of

so-called spurious, nonphysicrd solutions. To overcome this diffi-

cult y, various approaches have recently been developed; these are

reviewed in [1]. More recently, a new finite element formulation

for the analysis of dielectric waveguide modes has been devel-

oped by the authors in terms of the transverse magnetic field

component (17t ) [2]. The key point of this method, which is

distinctly different from other transverse field methods [3]-[7], is

that it transforms the finite element equation in terms of a full

vector IZ field [8], [9] into one in terms of only the transverse

magnetic field component, using the condition v. H = O. In this

approach, the spurious solutions can be completely eliminated in

the entire region of a propagation diagram, and the finaf matrix

dimension is reduced to two thirds that of the conventional

three-component approach using the penrdty function method

[10]-[14]. However, in the finite element analysis based on this

approach, the magnetic field components are first obtained as an

eigenvector, and the electric field components are later derived
from them via Maxwell’s equations. This additional operation

based on spatial differentiations of the original data may cause

an unnatural field profile when one uses lower order Lagrange

elements.

In this paper, as an electric field version of the method

described in [2], a finite element method for electromagnetic

waveguide problems is formulated using the transverse electric

field component (E, ). In this approach, the spurious solutions
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can be eliminated in the entire region of a propagation diagram,

and the dimension of the final matrix equation is reduced to two

thirds that of the full vector E field approach based on a penalty

function [15], [16]. The validity of the present method is con-

firmed via applications to a few representative waveguiding prob-

lems.

11. FORMULATION

We consider a waveguide with a tensor permeability and a

scalar permittivity. With a time dependence of the form exp ( jtii)

being implied, from Maxwell’s equations the following wave

equation is derived:

vx([p]-lvx E)–k@=o (1)

where o is the angular frequency, k. is the free-space wavenum-

ber, [p] is the relative permeability tensor, and c is the relative

permittivity, which is assumed to be constant in each material.

The divergence relation for source-free media, v.~ = O, can be

written

tE, = (“jp)-l(caEx/’ax + ca~v/ay) (2)

where ~ is the phase constant in the propagation direction (z

direction).

Application of the standard finite element technique [2] to (1)

and (2) gives the following matrix equations:

[s]{ E}-(ko/’p)2[T] {E} = {o} (3)

[D,]{ E,}=[D,] {E,} (4)

where

[s] =~/J[B]*[p],-’[ B] ’d2dj (5)
ge

[T] =~J@N]*[N]%dj (6)
e

[D=l=i/J’e{N} {N} TdidY (7)
e

[Df]=:xJ~[c={N} {N}: te{~}{iv}:] dIdj (8)
e

[1{Ex}

{Et}= {E,} ~ (9)

Here, {N} is the shape function vector; {O} is a null vector; T,

{.}, and { ~}~ denote a transpose, a column vector, and a row

vector, respectively; the components of vectors { E.Y}, { EY }, and

{E= } are the values of EX, E,, and EZ at nodaf points in the

cross section, respectively; * denotes complex conjugate; x = /3x

and j = By; and [N] and [B] are given in [14].

Using (4), we can express the nodal electric field vector {E} in

terms of {E,}:

{E}=[~l{E, } (lo)

where

[1[u]

‘D]= [DZ]-l[ D,] “
(11)

Here [U] is a unit matrix.

Substituting (10) into (3) and multiplying (3) by [D]T from the

left, we obtain the following finaf matrix equation with respect to

the transverse electric field component {E, }:

[~,] {Et} -(kO/’/3[~r]r] {E,}= {O} (12)
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Fig. 1. Dispersion characteristics of half-filled dielectric waveguides.

(a) c1 =1.5. (b) c1 = 10.

where

[~z] =[D]T[S][D] (13)

[Z] =[~lT[q[~l. (14)

In (12), the nodal electric field vector should be forced to

satisfy the boundary conditions at the interface between two

media with different permittivities [15], [16]. We consider an

interface 1? with an abrupt discontinuity y in the permittivit y as

shown in [15, fig. 1]. The tangential components of E and the

normal component of (E should be continuous at the interface

r. These boundary conditions can be written as

{E.}2=q..{~.}l+qx,{~,}, (15)

{:,}2=9XY{EX}I+ 9.YY{EY}, (16)

{E, },={Z}l (17)

where the components of {E,}, are the values of E, at the nodal

points on r included in the element e,. The quantities q.., qX,,
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Fig. 2. Dmpersion characteristics of rectang.rlar wavegaide with diamond.

shaped insert.

and qvy are given by

9.X = sinzO+ ( C1/cz) COS2 e (18)

qXy= (.q/c2 -1) sinflcoso (19)

9YY= cos2$ + (cl/c:l) sidd (20)

where q and (2 are the relative permittivities of regions 1 and 2,
respectively, and 4 is the angle between the unit vector normal to
r and the x ix&.

By using the original functional for el and the modified

functional for e,, which can be obtained by considering (15)-(17)

in the original one, the boundary conditions of the electric field

E at the interface with an abrupt discontinuity in the permittivity

are satisfied [15].

Equation (12) is an ordinary matrix eigenvalue problem whose

eigenvalue and eigenvector are ( kO//? )2’ and {El}, respectively. It

should be noted that the divergence co udition v. D = O is implic-

itly included in (12,) and the matrix dimension is reduced to two

thirds that of the penalty function method [15], [16]. The electric

field can be obtained first as an ei~nvector in (12), and the

tensor permeability is considered. (Note that a constant scalar

permeability is assumed in [2].)

HI. NUMERICAL 13XAMPLES

In this section, we present computed results obtained by the

present formulation. In numerical co reputations, double preci-

sion is used to avoid roundoff errors and Householder’s method

is used as an eigenvalue solution method. Since the matrices (13)

and (14) are dense, unlike those generated by the penalty ap-

proach, there is no possibility of takhg advantage of sparsity

with a sophisticated eigenvalue solver, An arbitrary small value

of the input datum, e.g., /3W = 10–”, 10– 2, virtually gives a

cutoff value of Low.

Fig. l(a) and (b) shows the dispersion characteristics for the

first five modes of half-filled dielectric waveguides, where the

plane of symmetry is assumed to be a perfect magnetic conductor

and one half of the cross section is divided into second-order

triangular elements (number of elements (NE) = 36, number of

nodal points (iVP ) = 91). In Fig. 1, the broken lines correspond to

the case in which no additional boundary conditions are explic-
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itly imposed at the interface between media with different per-

mittivities. It is found from Fig. 1 that the agreement is very good

between the results obtained by the present formulation (solid

lines) and those obtained by the formulation using the transverse

magnetic field component (hollow circles) [2]. The spurious solu-

tions do not appear in the entire region of a propagation dia-

gram.

As a more complicated waveguiding configuration, we next

consider the rectangular waveguide with a diamond-shaped insert

studied by Csendes and Silvester [17], as illustrated in Fig. 2. In

this waveguide, there are abrupt changes in the permittivity at the

interface, the normal direction of which does not coincide with

the direction of a coordinate axis. Fig. 2 shows the dispersion

characteristics for the fundamental mode, where two planes of

symmetry are assumed to be perfect magnetic conductors and

one quarter of the cross section is divided into second-order

triangular elements. In Fig. 2, the results of the H, field formula-

tion [2] with NE= 50 and NP = 121 and those of the modal

approximation technique [17] are also presented. For q =1.5, the

results of the present Et field formulation with NE = 50 and

NP =121 agree well with those of the 1%, counterpart. On the

other hand, for a larger value of relative perrnittivity, c1 =10, the

results of the Et field formulation with NE = 50 deviate from

those of the H, counterpart at higher frequencies. This deviation

at higher frequencies reflects the singularity of the normaf electric

field component at the tips of wedges of the dielectric insert

[18]-[20]. Such a singularity near the tip of a dielectric corner

may cause electrical breakdown in ~gh-power applications. It is

evident from Fig. 2 that the Et field finite element solutions can

be improved by increasing the number of elements. Indeed, the

results of the Et field formulation with NE = 128 and NP = 289

are closer to those of the Ht field counterpart. No spurious

solutions are involved in this case as well.

IV. CONCLUSIONS

We have formulated a vectorird finite element scheme for

solving guided-wave problems using the transverse electric field

component. Considering the duality between electric and mag-

netic field vectors in Maxwell’s equations, we have used the same

procedure as the transverse magnetic field counterpart except

that additional conditions we enforced on the boundary between

different dielectric materials. In this approach, the electric field

components cai be directly obtained as an eigenvector of a

matrix eigenvalue problem. Furthermore, no spurious solutions

are involved in the entire region of a propagation diagram, and

the dimension of the find matrix equation is reduced to two

thirds that of the penrdty function method. We have confirmed

the validity of the present formulation via applications to some

canonical waveguide problems.

The approach desc~bed in this paper is also applicable to

waveguides containing @sotropic media such as ferntes because

the tensor permeability may vary from material to material.

Furthermore, extension to waveguides containing lossy and/or

active media is straightforward if one uses the procedure that has

recently been proposed by the authors [21] for the magnetic field

case.
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An Improved Algorithm for the Computer-Aided

Design of Coupled Slab Lkes

STANISLAW ROSLONIEC

Abstract — Improved analytical formulas for the compnter-aided design

of parallel coupled slab lines are presented. These formulas ensure a good

agreement of calculations with accurate numerical results for a wide range

of geometrical dimensions of the lines.
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