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absorbers, and has the advantage of posing no circuit reliability
problems. )

The results presented were limited to the TM;;, mode. The
analysis may be easily applied to higher order cavity modes if the
circuit couples to those modes.
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Finite Element Formulation for Guided-Wave Problems
Using Transverse Electric Field Component

KAZUYA HAYATA, MASASHI EGUCHI, AND
MASANORI KOSHIBA, SENIOR MEMBER, 1EEE

Abstract — A finite-element formulation for electromagnetic waveguide
problems is described using the transverse electric field component. In this
approach, the divergence relation v-D =0 is satisfied and spurious solu-
tions can be eliminated in the entire region of a propagation diagram. The
validity of the formulation is examined via applications to a few canonical
guided-wave problems.

I. INTRODUCTION

The most serious difficulty in applying the finite element
method to waveguide problems has been the appearance of
so-called spurious, nonphysical solutions. To overcome this diffi-
culty, various approaches have recently been developed; these are
reviewed in [1]. More recently, a new finite element formulation
for the analysis of dielectric waveguide modes has been devel-
oped by the authors in terms of the transverse magnetic field
component (H,) [2). The key point of this method, which is
distinctly different from other transverse field methods [3]-[7], is
that it transforms the finite element equation in terms of a full
vector H field [8], [9] into one in terms of only the transverse
magnetic field component, using the condition v+-H = 0. In this
approach, the spurious solutions can be completely eliminated in
the entire region of a propagation diagram, and the final matrix
dimension is reduced to two thirds that of the conventional
three-component approach using the penalty function method
[10]-]14). However, in the finite element analysis based on this
approach, the magnetic field components are first obtained as an
eigenvector, and the electric field components are later derived
from them via Maxwell’s equations. This additional operation
based on spatial differentiations of the original data may cause
an unnatural field profile when one uses lower order Lagrange
clements.

In this paper, as an electric field version of the method
described in [2], a finite element method for electromagnetic
waveguide problems is formulated using the transverse electric
field component (E,). In this approach, the spurious solutions
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can be eliminated in the entire region of a propagation diagram,
and the dimension of the final matrix equation is reduced to two
thirds that of the full vector E field approach based on a penalty
function [15], [16]. The validity of the present method is con-
firmed via applications to a few representative wavegniding prob-
lems.

II. FORMULATION

We consider a waveguide with a tensor permeability and a
scalar permittivity. With a time dependence of the form exp (jw?)
being implied, from Maxwell’'s equations the following wave
equation is derived:

v X([p] 'V XE)—k}kE=0

M
where  is the angular frequency, &, is the free-space wavenum-
ber, [p] is the relative permeability tensor, and € is the relative
permittivity, which is assumed to be constant in each material.

The divergence relation for source-free media, v-D = 0, can be
written

¢E, = (jB) '(<E, /dx +€IE, /dy) 2

where 8 is the phase constant in the propagation direction (z
direction).

Application of the standard finite element technique [2] to (1)
and (2) gives the following matrix equations:

[SI{E}-(ko/BYITI{E} = {0} (3)
[DH{E} =[DI{E} (4)

where

[51=2 [[[BTLn). (] dxdy (5)
(T1=Z [[eINPIN]dzap (6)

[D]=% [[eN) () didy ()

(21 ==L [[le (N} {(M)D efN} (V)] diap (8)

E
{E}=HEyH )

Here, { N} is the shape function vector; {0} is a null vector; 7,
{-}, and {-}” denote a transpose, a column vector, and a row
vector, respectively; the components of vectors { E, }, { E, }, and
{E,} are the values of £, E_, and E, at nodal points in the
cross section, respectively; * denotes complex conjugate; X = Bx
and y=By; and [N] and [ B] are given in [14].

Using (4), we can express the nodal electric field vector { E} in
terms of { E,}:

{E}Y=[DPI{E}

| 1w
Lp1= [[DZJ*[D,]}'

Here [U] is a unit matrix.

Substituting (10) into (3) and multiplying (3) by [D]7 from the
left, we obtain the following final matrix equation with respect to
the transverse electric field component { E, }:

(10)

where

(11)

[S.1(E}~(ko/BY [T {E} = {0} (12)
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Fig. 1. Dispersion characteristics of half-filled dielectric waveguides.
(2) ¢ =1.5. (b) ¢ =10,

where
& T

[S.] = (P17 (s D] (13)
[7.] =[p1"[7)( D). (14)
In (12), the nodal electric field vector should be forced to
satisly the boundary conditions at the interface between two
media with different ‘permittivities [15], [16]. We consider an
interface I' with an abrupt discontinuity in the permittivity as
shown in [15, fig. 1]. The tangential components of E and the

normal component of ¢E should be continuous at the interface
T'. These boundary conditions can be written as

{Ex }2 =qxx{Ex}1+ qu{ E)‘}l
{E.v}z=qu{Ex}1+q.vy{Ey}1 (16)
{Ez}2={Ez}1 (17)

where the components of { E,} , are the values of E, at the nodal
points on I' included in the element e,. The quantities ¢, Gy

(15)

3
o Csendes et al. e
g Hy formulation
e | Ne=50 .
+ Ey formulation [
® Neg=50
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W
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Fig. 2. Dispersion characteristics of rectangular waveguide with diamond-
shaped 1nsert.

and g, are given by

Gux =SID20 + (€, /€;) cos? 0

(18)
(19)
(20)

where ¢ and ¢, are the relative permittivities of regions 1 and 2,
respectively, and 8 is the angle between the unit vector normal to
I" and the x axis.

By using the original functional for e; and the modified
functional for e,, which can be obtained by considering (15)~(17)
in the original one, the boundary conditions of the electric field
E at the interface with an abrupt discontinuity in the permittivity
are satisfied [15].

Equation (12) is an ordinary matrix eigenvalue problem whose
eigenvalue and eigenvector are (k, /B8)° and { E, }, respectively. It
should be noted that the divergence condition v-D = 0 is implic-
itly included in (12) and the matrix dimension is reduced to two
thirds that of the penalty function method [15], [16]. The electric
field can be obtained first as an eigenvector in (12), and the
tensor permeability is considered. (Note that a constant scalar
permeability is assumed in [2].)

4y, = (& /€y ~1)sinfcos 8
=cos” 0 + (¢ /¢, ) sin’

qyy

III. NUMERICAL EXAMPLES

In this section, we present computed results obtained by the
present formulation. In numerical computations, double preci-
sion is used to avoid roundoff errors and Householder’s method
is used as an eigenvalue solution method. Since the matrices (13)
and (14) are dense, unlike those generated by the penalty ap-
proach, there is no possibility of taking advantage of sparsity
with a sophisticated eigenvalue solver. An arbitrary small value
of the input datum, e.g, W =107, 1072, virtually gives a
cutoff value of kyW.

Fig. 1(a) and (b) shows the dispersion characteristics for the
first five modes of half-filled dielectric waveguides, where the
plane of symmetry is assumed to be a perfect magnetic conductor
and one half of the cross section is divided into second-order
triangular elements (number of elements (N;) = 36, number of
nodal points (N,) = 91). In Fig. 1, the broken lines correspond to
the case in which no additional boundary conditions are explic-
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itly imposed at the interface between media with different per-
mittivities. It is found from Fig. 1 that the agreement is very good
between the results obtained by the present formulation (solid
lines) and those obtained by the formulation using the transverse
magnetic field component (hollow circles) [2]. The spurious solu-
tions do not appear in the entire region of a propagation dia-
gram.

As a more complicated waveguiding configuration, we next
consider the rectangular waveguide with a diamond-shaped insert
studied by Csendes and Silvester [17], as illustrated in Fig. 2. In
this waveguide, there are abrupt changes in the permittivity at the
interface, the normal direction of which does not coincide with
the direction of a coordinate axis. Fig. 2 shows the dispersion
characteristics for the fundamental mode, where two planes of
symmetry are assumed to be perfect magnetic conductors and
one quarter of the cross section is divided into second-order
triangular elements. In Fig. 2, the results of the H, field formula-
tion [2] with Nz =350 and N,=121 and those of the modal
approximation technique [17] are also presented. For ¢, =1.5, the
results of the present E, field formulation with AN, =50 and
N, =121 agree well with those of the H, counterpart. On the
other hand, for a larger value of relative permittivity, ¢, =10, the
results of the E, field formulation with Ny =350 deviate from
those of the H, counterpart at higher frequencies. This deviation
at higher frequencies reflects the singularity of the normal electric
field component at the tips of wedges of the dielectric insert
[18]-[20]. Such a singularity near the tip of a dielectric corner
may cause electrical breakdown in high-power applications. It is
evident from Fig. 2 that the E, field finite element solutions can
be improved by increasing the number of elements. Indeed, the
results of the E, field formulation with Ny =128 and N, =289
are closer to those of the H, field counterpart. No spurious
solutions are involved in this case as well.

IV. CONCLUSIONS

We have formulated a vectorial finite element scheme for
solving guided-wave problems using the transverse electric field
component. Considering the duality between electric and mag-
netic field vectors in Maxwell’s equations, we have used the same
procedure as the transverse magnetic field counterpart except
that additional conditions are enforced on the boundary between
different dielectric materials. In this approach, the electric field
components can be directly obtained as an eigenvector of a
matrix eigenvalue problem. Furthermore, no spurious solutions
are involved in the entire region of a propagation diagram, and
the dimension of the final matrix equation is reduced to two
thirds that of the penalty function method. We have confirmed
the validity of the present formulation via applications to some
canonical waveguide problems.

The approach described in this paper is also applicable to
waveguides containing anisotropic media such as ferrites because
the tensor permeability may vary from material to material.
Furthermore, extension to waveguides containing lossy and/or
active media is straightforward if one uses the procedure that has
recently been proposed by the authors [21] for the magnetic field
case.
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An Improved Algorithm for the Computer-Aided
Design of Coupled Slab Lines

STANISEAW ROSLONIEC

Abstract —Improved analytical formulas for the computer-aided design
of parallel coupled slab lines are presented. These formulas ensure a good
agreement of calculations with accurate numerical results for a wide range
of geometrical dimensions of the lines.
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